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Power spectrum and fractal dimension of laser
backscattering from the ocean
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We flew an airborne lidar perpendicular to the coastline along straight-line transects that varied in length
between 230 and 280 km. The sample spacing was �3 m, so we sampled almost five decades of spatial scales.
Except for the return from right at the surface, the power spectra of backscattered power had a power-law
dependence on spatial frequency, with a slope of �1.49. This corresponds to a fractal dimension of 1.76. This
implies that the distribution is not as patchy as that of a purely turbulent process.

OCIS codes: 010.3640, 010.4450, 280.7060, 290.7050.
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. INTRODUCTION
n July 2003, we flew the National Oceanic and Atmo-
pheric Administration (NOAA) Fish lidar in a series of
ong, straight transects off the coast of Oregon and Wash-
ngton. These transects were long enough that we could
ample a range of spatial scales of almost five decades in
45 min. The wide range of spatial scales suggested an

nvestigation into whether the lidar return exhibited frac-
al characteristics over some part of this range. We were
articularly interested to see if the distribution of scatter-
ng particles measured by the lidar had a power spectrum
haracteristic of turbulent mixing over some range of spa-
ial scales.

There are several techniques to investigate the fractal
haracteristics of a data set, but the one that seems most
ppropriate for our work involves finding the power spec-
rum of a time series.1 A fractal process is characterized
y a power-law spectrum of the form

S = f−�, �1�

here f is the frequency and � is the slope of the spectrum
n a log–log plot. In our case, the temporal frequency is
onverted into a more meaningful spatial frequency by
sing the speed of the aircraft. For a one-dimensional
easurement, the fractal dimension (Hausdorff–
esicovitch) is inferred from the slope through the rela-

ionship

D = 2.5 − 0.5�. �2�

There have been several studies into the fractal nature
f light scattered from the ocean surface. Zosimov and
augolnykh2 measured the number of laser glints from a

hip. They found a spectral slope of 0.86 over a frequency
ange of 0.02–0.2 Hz, which corresponds to spatial wave-
engths of 40–400 m. Shaw and Churnside3 made a simi-
ar measurement from a stationary platform and found a
pectral slope of 0.62 over a frequency range of
.001–0.3 Hz. These frequencies are below the frequency
f the dominant wind waves, and this range roughly cor-
esponds to the range in Zosimov and Naugolnykh. At fre-
uencies �1.5–15 Hz� higher than that of the dominant
ind waves, Shaw and Churnside observed a slope of
.45.
There have also been studies of the fractal nature of

ight scattered from the water volume. Lovejoy et al.4

easured scattered solar radiance from the ocean in eight
hannels, and over spatial scales from 14 m to 110 km.
he spectral slope for all channels was �1.25, at least for
cales greater than 100 m.

. LIDAR SYSTEM AND OPERATIONS
he NOAA Fish lidar is a backscatter lidar under devel-
pment for the detection of fish schools, and is described
n detail elsewhere.5–8 During the flights described in this
aper, the system transmitted �120 mJ of linearly polar-
zed, green �532 nm� light per pulse at a rate of
0 pulses/s. During the day, the beam divergence (full
idth) was �17 mrad. At night, this was increased to
50 mrad.
The system receiver recorded the temporal evolution of

he return from each pulse in the linear polarization per-
endicular to that of the transmitted pulse. The cross po-
arization was chosen to provide the best contrast be-
ween fish and small particles in the water. The field of
iew of the receiver telescope was matched to the trans-
itted beam divergence. The detector was a photomulti-

lier tube equipped with an interference filter to reduce
ackground light. An amplifier with a logarithmic re-
ponse compressed four decades of dynamic range into
he 8 bit range of the digitizer, which sampled the signal
t a rate of 1 GHz. The signal is a combination of the scat-
ering from suspended sediments, phytoplankton, zoop-
ankton, and fish in relation to the volume backscatter co-
fficient and depolarization of each.

The system computer recorded the lidar return, global
ositioning system position, and the gain on the photo-
ultiplier tube. In processing, the response of the ampli-
er and the gain of the photomultiplier were used to cal-
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ulate the photocathode current for each sample. This
urrent is directly proportional to the volume backscatter
oefficient ���� at the distance corresponding to the time
elay for each sample. These distances were converted to
epth by locating the large surface return in each pulse
aveform and counting samples from there. Each addi-

ional sample corresponds to �0.11 m of depth.
Each flight began near the coast and went due west out

lmost to 128°W, where the plane turned around and fol-
owed the same line back (Fig. 1). This was done during
he day and at night for each of the five lines. Flight alti-
ude was �300 m, and flight speed was 90±4 m s−1, so
he lidar pulses were separated by �3 m along the flight
rack. At this altitude, the lidar spot diameter on the sur-
ace was �5 m during the daytime flights and �15 m at
ight. The flight tracks varied in length from �230 to
80 km, so we sampled almost five decades of horizontal
cales. The time to cover each transect varied between
3 min for the shortest line and 52 min for the longest, so
e would expect little aliasing of temporal variability into

he inferred spatial variability.
The data were separated by direction of flight (west-

ound or eastbound), time of day (daytime or nighttime),
nd latitude to obtain a total of 20 transects. For each
ransect, we extracted the magnitude of the lidar return
rom depths of 0, 5, 10, 15, and 20 m, for a total of 100
ime series of data. We calculated the power spectrum of
ach of these time series and estimated its slope by using
least-squares fit to the plot of the logarithm of the power

pectrum against the logarithm of the spatial scale over

ig. 1. Flight tracks off the coast of Oregon and Washington alon
200 m isobath) is shown off the coastline.
he spatial scale range from 10−4 to 0.1 rad m−1. At lower
patial frequencies, the spectra are noisy because there
re relatively few samples that contribute. At higher spa-
ial frequencies, the data are occasionally contaminated
y system noise because the lidar signal is small; this ef-
ect is larger during the daytime flights when the lidar
ignal is noisier.

. RESULTS
he first result is that the power spectra for the depths of
–20 m are well approximated by a power law over most
f the range of spatial frequencies. The typical spectra of
ig. 2 show that the power law holds until the white in-
trument noise level is reached. Nighttime data are gen-
rally cleaner than daytime data, and data from deeper in
he water column tend to be noisier than data from closer
o the surface. The data from deeper in the water are also
t lower levels because of attenuation in the water, but
he slopes are generally similar.

The surface data can be different. While the surface
ata from 45°N are similar to the data from other depths,
he data from other latitudes can be very different. Figure
shows a spectrum that does not have a clear power-law

ependence, and the slope over the range of spatial scales
e are using is much less than at other depths. However,

he spectrum appears to have a power-law component at
ower frequencies and a broad peak centered at �0.1 m−1.
his frequency corresponds to a wavelength of �60 m; a
urface wave with this wavelength would have a period of
6 s.

ger latitude lines from 44°N to 48°N. Location of the shelf break
g inte
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The 6 s period can be compared with the average wave
eriod recorded by buoys in the vicinity.9 We note that the
idar data were collected between 6:12 and 7:00 UTC on
uly 10 along 44°N. The nearest NOAA buoys are num-
er 46050 at 44.62°N, 124.53°W and number 46015 at
2.75°N, 124.85°W. The average wave periods reported
y the first buoy were 5.3 s at 6:00 and 5.4 s at 7:00. The
econd buoy reported 6.6 s at 6:00 and 6.2 s at 7:00. These
alues suggest that the peak in the spectrum is an effect
f surface waves.

The measured spectral slopes are presented in Table 1
or each of the 100 time series. The average statistical un-
ertainty in the slope was �0.005, with the largest uncer-
ainty less than 0.01. The mean slope, neglecting surface

ig. 2. Logarithm of power spectrum of lidar return S as a func-
ion of spatial frequency f along 45°N latitude for a depth of
0 m during the day (lower curve) and a depth of 10 m the same
ight (upper curve). Also shown are the linear fits with slopes of
1.47 and −1.52, respectively.

ig. 3. Logarithm of power spectrum of lidar return S as a func-
ion of spatial frequency f along 44°N latitude for a depth of 0 m
t night. The shallower line is the fit from −4 to −1 with a slope
f −0.51, and the steeper line is the fit from −4 to −2 with a slope
f −1.36.
alues, was 1.49±0.03. Table 2 lists the mean slopes for
arious subsets of the data. We used the Student’s t-test
o test the hypotheses that various combinations of slopes
ere from distributions with different mean values, using
confidence level of 0.05.
In the first test, we investigated the values by depth.

igure 4 suggests that the surface values might be signifi-
antly different from the values at different depths. The
-test results show that the surface results are different
rom the results at each of the other depths, but we can-
ot say that the results from any two other depths are dif-
erent from each other. With this result, we neglected the
urface results in comparing day values with night values
nd found a small, but statistically significant, difference

Table 1. Spectral Slopes by Latitude, Time of Day,
Flight Direction, and Depth

Slope (m)

Latitude
(deg) Time Direction 0 5 10 15 20

4 Day East 0.64 1.53 1.41 1.45 1.47
4 Day West 0.95 1.63 1.51 1.32 1.47
4 Night East 0.51 1.58 1.54 1.42 1.39
4 Night West 0.53 1.50 1.62 1.48 1.40
5 Day East 1.26 1.39 1.40 0.97 1.15
5 Day West 1.48 1.72 1.49 1.59 1.47
5 Night East 1.75 1.71 1.63 1.67 1.86
5 Night West 1.21 1.45 1.52 1.40 1.36
6 Day East 1.15 1.42 1.36 1.37 1.37
6 Day West 1.13 1.54 1.57 1.60 1.37
6 Night East 1.13 1.38 1.37 1.48 1.66
6 Night West 1.14 1.44 1.44 1.56 1.59
7 Day East 0.53 1.37 0.83 1.04 0.92
7 Day West 0.55 1.51 1.15 0.97 0.88
7 Night East 0.65 1.62 1.52 1.42 1.20
7 Night West 0.40 1.66 1.44 1.56 1.57
8 Day East 1.09 1.72 1.70 1.80 1.61
8 Day West 1.23 1.64 1.72 1.72 1.65
8 Night East 0.48 1.66 1.74 1.96 1.91
8 Night West 1.05 1.68 1.65 1.86 1.77

Table 2. Mean Slope and Uncertainty in Mean for
Day and Night (Neglecting Surface) by Depth and

by Latitude (Neglecting Surface)

Condition Mean Uncertainty

Day 1.42 0.04
Night 1.57 0.03
0 m 0.94 0.08
5 m 1.56 0.03
10 m 1.48 0.05
15 m 1.48 0.06
20 m 1.45 0.06
44°N 1.48 0.02
45°N 1.49 0.06
46°N 1.47 0.03
47°N 1.29 0.07
48°N 1.74 0.03
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etween day and night (Fig. 5). Comparing the various
atitudes (Fig. 6) (also neglecting surface values), we
ound the data from 48°N to be significantly different
rom each of the other transects. The data from 44°N,
5°N, and 46°N are not different. The data from 47°N
re interesting; at the confidence level of 0.05, they are
ifferent from the southern three lines, but they are not
ifferent at a confidence level of 0.02.

. DISCUSSION
rom the measured slope of �=1.49, we infer an average

ractal dimension of D=1.76. This implies that the larger
cales are more dominant than would be the case for ran-
om white noise ��=0,D=2.5� or 1/ f noise ��=1.0,D
2.0�, but less dominant than for turbulence within the

nertial subrange ��=1.67,D=1.67� or a Brownian pro-
ess ��=2.0,D=1.5�. In other words, the lidar scattering
rom below the surface is patchier than white noise or 1/ f
oise, but not as patchy as turbulence or Brownian mo-
ion in one dimension.

There are some statistically significant differences in
ractal dimension within the data, however. The greatest
ifference exists between the average and the values
long the northernmost transects. Along 48°N, the aver-
ge slope suggests that the return is patchier than the
ther lines, and, in fact, it is even slightly patchier than
ne would expect from a turbulent process. By contrast,
he average slope along 47°N suggests that the return
here is less patchy than the other lines, with more vari-
bility. A smaller, but significant, difference exists be-
ween the daytime and nighttime data. The nighttime
ata are patchier, which might be an effect of the diurnal
igration of zooplankton and fish between near-surface
aters at night and deeper waters during the day. We

peculate that a higher fraction of the scattering at night
s caused by fauna, and that this is patchier than scatter-
ng from phytoplankton.

There is evidence to support the notion that the distri-
ution of phytoplankton might be less patchy than our li-
ar data. In an indirect estimate of the patchiness of phy-
oplankton distribution, Lovejoy et al.4 made airborne

ig. 4. Depth dependence of power spectral slopes (from Table
).
easurements of radiance from the ocean in eight chan-
els, and over spatial scales from 14 m to 110 km. The
pectral slope for all channels was �1.25, at least for
cales greater than 100 m. Some channels exhibit a flat-
ening at smaller scales, but even the steepest slopes are
atter than our subsurface values. Seuront et al.10 esti-
ated phytoplankton density directly with a fluorometer

nd calculated the slope of the temporal power spectrum
o be �1.22 for time scales between �100 and 40,000 s.
ssuming Taylor’s hypothesis of frozen flow, our smallest
patial scale would be within the same regime as long as
he flow is not greater than a few centimeters per second.
n contrast to these values, Makris et al.11 measured the
istribution of schooling fish and obtained a slope of 1.5.
hus the diurnal migration of fauna might explain the
ay and night differences in patchiness. Fish and zoop-
ankton are expected to be patchier than phytoplankton,
nd more of the scattering is likely from these patchier
cattering objects at night than during the day, leading to
greater slope at night than during the day.
The lack of a statistically significant difference among

he various depths between 5 and 20 m was a surprise.
ensity profiles of the water column at six stations along

ig. 5. Day and night values of power spectral slopes of below-
urface data (from Table 2).

ig. 6. Latitude dependence of power spectral slopes of below-
urface data (from Table 2).
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ach line were measured from a ship on the same day as
he lidar measurements. These showed a well-mixed sur-
ace layer with a depth that varied from 3 to 25 m, with
n average value of 11.4 m and a standard deviation of
.4 m. This is within the depth range of our data, and we
onclude that there was no statistically significant differ-
nce in fractal dimension above and below the pycnocline.
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